RESEARCH PAPER:

Influence of organic manures on microbial population of Amaranthus and **Brassica** species grown with magnesite mine spoil

V. DAVAMANI AND P. DORAISAMY

Asian Journal of Environmental Science (December, 2009 to May, 2010) Vol. 4 No. 2 : 221-222

See end of the article for authors' affiliations

Correspondence to : V. DAVAMANI Department of Environmental Science, Tamil Nadu Agricultural University, COIMBATORE, (T.N.) INDIA

Key words :

Brassica sp.,

spoil.

Organic manure,

Amaranthus sp.,

Magnesite mine

SUMMARY

The present study was concluded to evaluate the microbial dynamics of magnesite mine spoil. A pot culture experiment was laid out in the Department of Environmental Science, Tamil Nadu Agricultural University, Coimbatore. Results revealed that The bacterial, fungal and actinomycetes population were the highest in Amaranthus sp. grown in magnesite mine spoil with FYM, vermicompost and 100% NPK (21.2 x 10⁶, 12.4 x 10³ and 6.5 x 10² CFU g⁻¹, respectively). The increased and decreased microbial population was probably due to the availability of nutrient status in the spoil by the addition of organic amendments.

The success of phytoremediation depends upon the selection of plant species and soil amendments that maximize the removal of heavymetals from the top layer of contaminated soil. At the same time, amendment of contaminated soils with lime, phosphate and organic acids generally reduce the bioavailability of heavy metals (Khan et al., 2000). Purkayasitha and Menon (1999) reported that incorporation of organic residues in low organic soil influence the various soil biological activities leading to enhancement of plant growth. The addition of peat and manure increase Cu, Zn and Ni accumulation by wheat (Narwal and Singh, 1998) and also facilitate the plant growth in poor soils, providing a higher nutrient and water supply to the crops. Selvam and Lourduraj (1998) recorded that the organic matter influence soil productivity by influencing soil physical, chemical and biological properties.

MATERIALS AND METHODS

Organisms

Sr. No.

An experiment was laid out in the Department of Environmental Science, Tamil Nadu Agricultural University, Coimbatore to evaluate the rhizosphere microbial population of Amaranthus sp. and Brassica sp. grown with magnesite mine spoils. The treatment details are as follows.

 T_1 -Magnesite mine spoil + Amaranthus sp. + 100% NPK, T₂-Magnesite mine spoil + Brassica sp. + 100% NPK, T_2 -Magnesite mine spoil + FYM + Amaranthus sp. + 100% NPK, T_{A} -Magnesite mine spoil + FYM + Brassica sp. + 100% NPK, T_5 -Magnesite mine spoil + Vermicompost + Amaranthus sp. + 100% NPK, T₆-Magnesite mine spoil + Vermicompost + Brassica sp. + 100% NPK, T_{γ} -Magnesite mine spoil + FYM + Vermicompost + Amaranthus sp. + 100% NPK, T_o-Magnesite mine spoil + FYM + Vermicompost + *Brassica* sp. + 100% NPK

Replication : 3; Design : Factorial Completely Randomized Block Design (FCRD)

Soil samples were collected from the pot culture experiments at different stages of crop growth viz., post germination (five and four days for Amaranthus and Brassica species, respectively), 45th day and post harvest stage and used for analyzing microbial population. Soil microbial population of different treatments were enumerated by the following standard plate count method using appropriate media for bacteria, fungi and actinomycetes as given below:

References

Accepted : November, 2009

1.	Bacteria	Nutrient glucose agar	Allen (1953)
2.	Fungi	Potato dextrose agar	Riker and Riker (1936)
3.	Actinomycetes	Ken Knight's agar	Rangaswami (1966)

Medium